Neuron Function How does a signal travel across and between neurons? Why? Just as the coaxial cables that run down your street or through your house carry television and Internet signals, the job of a neuron is to move an electrical signal from one place to another in order to send sensory messages throughout the body. In a previous activity you saw how a membrane potential is formed both at rest and during an inflow of ions. In this activity you will explore how changes in membrane potentials can propagate a signal down the axon of a neuron. 1. Which of the gated embedded proteins in Model 1 allow sodium ions ( ) through the membrane? 2. Which of the gated embedded proteins in Model 1 allow potassium ions ( ) through the membrane? 3. The neuron illustrated in Model 1 has received a signal from either a sensory cell (taste bud, skin cell, retinal cell, etc.) or from another neuron. What evidence do you find in diagram 1 of the model that indicates a signal has been received? 4. In diagram 2 of Model 1, gated embedded protein B has opened. Was this opening triggered by the arrival of a signal ligand? If no, propose an alternate stimulus that might have triggered the gate to open. 5. Consider Model 1. a. When a signal moves down the axon of the neuron, which direction do sodium ions move through the voltage-gated embedded proteins? b. What does the movement of sodium ions across the membrane do to the membrane potential near the open embedded protein? 6. Consider Model 1. a. When a signal moves through the axon of the neuron, which direction do potassium ions move through the voltage-gated embedded proteins? b. What does the movement of potassium ions across the membrane do to the membrane potential near the open embedded protein? GatesA BDandFallowsodiumionsthroughthemembrane GatesC EandGallowpotassiumionsthroughthemembrane Asignalligandhasboundtotheligandgatedembeddedproteinandthegatehasopened Nodiagram2doesnotshowaligandboundtoembeddedproteinBThegatemayhave openedbecauseofthechangeinmembranepotentialfromthefloodofionsnearby Sodiumionsmoveintothecellwhenthesodiumgatesareopened Themembranepotentialincreasesgetsmorepositiveasthesodiumionsmoveintothecell Potassiumionsmoveoutofthecellwhenthepotassiumgatesareopened Themembranepotentialdecreasesgetsmorenegative asthepotassiumionsmoveoutof thecel


No comments found.
Login to post a comment

jordancarter 7 months ago

This study guide is clear, well-organized, and covers all the essential topics. The explanations are concise, making complex concepts easier to understand. It could benefit from more practice questions, but overall, it's a great resource for efficient studying. Highly recommend!
Login to review this item
Q. What will I receive when I purchase this document?
A. You will receive a PDF that is available for instant download upon purchase. The document will be accessible to you at any time, from anywhere, and will remain available indefinitely through your profile.
Q. Satisfaction guarantee: how does it work?
A. Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Q. Who am I buying these notes from?
A. you are buying this document from us learnexams
Q. Will I be stuck with a subscription?
A. No, you only buy these notes for $ indicated . You are not obligated to anything after your purchase.
Q. Can learnexams be trusted?
A. check our reviews at trustpilot
Price $10.00
Add To Cart

Buy Now
Category exam bundles
Comments 0
Rating
Sales 0

Buy Our Plan

We have

The latest updated Study Material Bundle with 100% Satisfaction guarantee

Visit Now
{{ userMessage }}
Processing