Official June 2024
AQA
AS
FURTHER MATHEMATICS
7366/1
Paper 1
Merged Question Paper + Mark Scheme
Ace your Mocks!!!
G/LM/Jun24/G4001/V5 7366/1 (JUN247366101)
AS
FURTHER MATHEMATICS
Paper 1
Monday 13 May 2024 Afternoon Time allowed: 1 hour 30 minutes
Materials
l You must have the AQA Formulae and statistical tables booklet for
A‑level Mathematics and A‑level Further Mathematics.
l You should have a graphical or scientific calculator that meets the
requirements of the specification.
Instructions
l Use black ink or black ball‑point pen. Pencil should only be used for drawing.
l Fill in the boxes at the top of this page.
l Answer all questions.
l You must answer each question in the space provided for that question.
If you require extra space for your answer(s), use the lined pages at the end
of this book. Write the question number against your answer(s).
l Do not write outside the box around each page or on blank pages.
l Show all necessary working; otherwise marks for method may be lost.
l Do all rough work in this book. Cross through any work that you do not want
to be marked.
Information
l The marks for questions are shown in brackets.
l The maximum mark for this paper is 80.
Advice
l Unless stated otherwise, you may quote formulae, without proof,
from the booklet.
l You do not necessarily need to use all the space provided.
For Examiner’s Use
Question Mark
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
TOTAL
Please write clearly in block capitals.
Centre number Candidate number
Surname _________________________________________________________________________
Forename(s) _________________________________________________________________________
Candidate signature _________________________________________________________________________
I declare this is my own work.
2
Do not write
outside the
box
(02) G/Jun24/7366/1
Answer all questions in the spaces provided.
1 Express cosh2 x in terms of sinh x
Circle your answer.
[1 mark]
1 + sinh2 x 1 – sinh2 x sinh2 x – 1 –1 – sinh2 x
2 The function f is defined by
f(x) = 2x + 3 0 ≤ x ≤ 5
The region R is enclosed by y = f(x), x = 5, the x-axis and the y-axis.
The region R is rotated through 2π radians about the x-axis.
Give an expression for the volume of the solid formed.
Tick () one box.
[1 mark]
π
∫
5
0
(2x + 3) dx
π∫
5
0
(2x + 3)2dx
2π
∫
5
0
(2x + 3)dx
2π
∫
5
0
(2x + 3)2dx
3
Do not write
outside the
box
(03) G/Jun24/7366/1
Turn over U
3 The matrix A is such that det(A) = 2
Determine the value of det(A–1)
Circle your answer.
[1 mark]
–2 –1
2
1
2
2
4 The line L has vector equation
r = [ 4 ] –7
0
+ λ
[ –9
] 1
3
Give the equation of L in Cartesian form.
Tick () one box.
[1 mark]
x + 4
–9 = y – 7
1 = z
3
x – 4
–9 = y + 7
1 = z
3
x + 9
4 = y – 1
–7 , z = 3
x – 9
4 = y + 1
–7 , z = 3
4
Do not write
outside the
box
(04) G/Jun24/7366/1
5 The vectors a and b are given by
a = 3i + 4j – 2k and b = 2i – j – 5k
5 (a) Calculate a.b
[1 mark]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
5 (b) Calculate |a| and |b|
[2 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
|a| = ____________________________ |b| = ____________________________
5 (c) Calculate the acute angle between a and b
Give your answer to the nearest degree.
[2 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
5
Do not write
outside the
box
(05) G/Jun24/7366/1
Turn over U
6 (a) On the axes below, sketch the graph of
y = cosh x
Indicate the value of any intercept of the curve with the axes.
[2 marks]
x
y
O
6 (b) Solve the equation
cosh x = 2
Give your answers to three significant figures.
[2 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
6
(06) G/Jun24/7366/1
Do not write
outside the
box There are no questions printed on this page
DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED
7
Do not write
outside the
box
(07) G/Jun24/7366/1
Turn over U
7 The function f is defined by
f(x) = 1
√x 4 ≤ x ≤ 7
Find the mean value of f over the interval 4 ≤ x ≤ 7
Give your answer in exact form.
[3 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
8
Do not write
outside the
box
(08) G/Jun24/7366/1
8 (a) The complex number z is given by z = x + iy where x, y ∈ ℝ
8 (a) (i) Write down the complex conjugate z* in terms of x and y
[1 mark]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
8 (a) (ii) Hence prove that zz* is real for all z ∈ ℂ
[2 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
9
Do not write
outside the
box
(09) G/Jun24/7366/1
Turn over U
8 (b) The complex number w satisfies the equation
3w + 10i = 2w* + 5
8 (b) (i) Find w
[3 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
8 (b) (ii) Calculate the value of w2(w*)2
[1 mark]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
10
Do not write
outside the
box
G/Jun24/7366/1 (10)
9 (a) Show that, for all positive integers r,
r + 1
r + 2 – r
r + 1 = 1
(r + 1)(r + 2)
[1 mark]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
9 (b) Hence, using the method of differences, show that
n
∑r=1
1
(r + 1)(r + 2) = n
an + b
where a and b are integers to be determined.
[3 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
11
Do not write
outside the
box
G/Jun24/7366/1
Turn over U
(11)
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
9 (c) Hence find the exact value of
2000
∑r=1001
1
(r + 1)(r + 2)
[3 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
12
Do not write
outside the
box
G/Jun24/7366/1 (12)
10 The curve C has equation
y = 2x – 10
3x –
Category | AQA PAPERS AND MARK SCHEME |
Comments | 0 |
Rating | |
Sales | 0 |