Official June 2024
AQA
AS
FURTHER MATHEMATICS
7366/2S
Paper 2 Statistics
Merged Question Paper + Mark Scheme
Ace your Mocks!!!
G/LM/Jun24/G4001/V6 7366/2S (JUN2473662S01)
AS
FURTHER MATHEMATICS
Paper 2 Statistics
Friday 17 May 2024 Afternoon Time allowed: 1 hour 30 minutes
Materials
You must have the AQA Formulae and statistical tables booklet for
A-level Mathematics and A-level Further Mathematics.
You should have a graphical or scientific calculator that meets the
requirements of the specification.
You must ensure you have the other optional Question Paper/Answer Book
for which you are entered (either Discrete or Mechanics). You will have
1 hour 30 minutes to complete both papers.
Instructions
Use black ink or black ball-point pen. Pencil should only be used for drawing.
Fill in the boxes at the top of this page.
Answer all questions.
You must answer each question in the space provided for that question.
If you require extra space for your answer(s), use the lined pages at the end
of this book. Write the question number against your answer(s).
Do not write outside the box around each page or on blank pages.
Show all necessary working; otherwise marks for method may be lost.
Do all rough work in this book. Cross through any work that you do not want
to be marked.
Information
The marks for questions are shown in brackets.
The maximum mark for this paper is 40.
Advice
Unless stated otherwise, you may quote formulae, without proof, from the booklet.
You do not necessarily need to use all the space provided.
For Examiner’s Use
Question Mark
1
2
3
4
5
6
7
TOTAL
Please write clearly in block capitals.
Centre number Candidate number
Surname _________________________________________________________________________
Forename(s) _________________________________________________________________________
Candidate signature _________________________________________________________________________
I declare this is my own work.
2
Do not write
outside the
box
(02) G/Jun24/7366/2S
Answer all questions in the spaces provided.
1 The discrete random variable X has probability distribution function
P(X = x) =
0.45 x = 1
0.25 x = 2
0.25 x = 3
0.05 x = 4
0 otherwise {
State the mode of X
Circle your answer.
[1 mark]
0.25 0.45 1 2.5
2 A test for association is to be carried out.
The tables below show the observed frequencies and the expected frequencies that
are to be used for the test.
Observed X Y Z Expected X Y Z
A 28 6 66 A 45 15 40
B 884 B 938
C 54 16 10 C 36 12 32
It is necessary to merge some rows or columns before the test can be carried out.
Find the entry in the tables that provides evidence for this.
Circle your answer.
[1 mark]
Observed A-Z Observed B-Z Expected A-X Expected B-Y
3
Do not write
outside the
box
(03) G/Jun24/7366/2S
Turn over 8
3 The random variable X has a normal distribution with known variance 15.7
A random sample of size 120 is taken from X
The sample mean is 68.2
Find a 94% confidence interval for the population mean of X
Give your limits to three significant figures.
[3 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
Turn over for the next question
4
Do not write
outside the
box
(04) G/Jun24/7366/2S
4 The discrete random variable Y has probability distribution
y 15 21 36 43
P(Y = y) 0.16 0.32 0.29 0.23
The standard deviation of Y is s
4 (a) Show that s = 10.53 correct to two decimal places.
[4 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
5
Do not write
outside the
box
(05) G/Jun24/7366/2S
Turn over 8
4 (b) The median of Y is m
Find P(Y > m – 1.5 s)
[3 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
Turn over for the next question
6
Do not write
outside the
box
(06) G/Jun24/7366/2S
5 A spinner has 8 equal areas numbered 1 to 8, as shown in the diagram below.
8
4
2
7 1
5 3
6
The spinner is spun and lands with one of its edges on the ground.
5 (a) Assume that the spinner lands on each number with equal probability.
5 (a) (i) State a distribution that could be used to model the number that the spinner lands on.
[1 mark]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
5 (a) (ii) Use your distribution from part 5 (a) (i) to find the probability that the spinner lands on a
number greater than 5
[1 mark]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
7
Do not write
outside the
box
(07) G/Jun24/7366/2S
Turn over 8
5 (b) Clare spins the spinner 1000 times and records the results in the following table.
Number
landed on 12345678
Frequency 37 64 112 161 308 156 109 53
5 (b) (i) Explain how the data shows that the model used in part (a) may not be valid.
[2 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
5 (b) (ii) Describe how Clare’s results could be used to adjust the model.
[2 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
8
Do not write
outside the
box
(08) G/Jun24/7366/2S
6 The continuous random variable X has probability density function
f(x) =
3x
44 + 1
22 1 ≤ x ≤ 5
0 otherwise {
6 (a) Find P(X > 2)
[2 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
6 (b) Find the upper quartile of X
Give your answer to two decimal places.
[4 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
9
Do not write
outside the
box
(09) G/Jun24/7366/2S
Turn over 8
6 (c) Find Var(44X –3)
Give your answer to three decimal places.
[5 marks]
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
10
Do not write
outside the
box
G/Jun24/7366/2S (10)
7 Over a period of time, it has been shown that the mean number of customers
entering a small store is 6 per hour.
The store runs a promotion, selling many products at lower prices.
7 (a) Luke randomly selects an hour during the promotion and counts 11 customers
entering the store.
He claims that the promotion has changed the mean number of customers per hour
entering the store.
Investigate Luke’s claim, using the 5% level of significance.
[6 marks]
Category | AQA PAPERS AND MARK SCHEME |
Comments | 0 |
Rating | |
Sales | 0 |