Official June 2024
AQA
AS
MATHEMATICS
7356/1
Paper 1
Merged Question Paper + Mark Scheme
Ace your Mocks!!!
G/LM/Jun24/G4004/E9 7356/1 (JUN247356101)
AS
MATHEMATICS
Paper 1
Thursday 16 May 2024 Afternoon Time allowed: 1 hour 30 minutes
Materials
l You must have the AQA Formulae for A‑level Mathematics booklet.
l You should have a graphical or scientific calculator that meets the
requirements of the specification.
Instructions
l Use black ink or black ball-point pen. Pencil should only be used for drawing.
l Fill in the boxes at the top of this page.
l Answer all questions.
l You must answer each question in the space provided for that question.
l If you need extra space for your answer(s), use the lined pages at the end of
this book. Write the question number against your answer(s).
l Do not write outside the box around each page or on blank pages.
l Show all necessary working; otherwise marks for method may be lost.
l Do all rough work in this book. Cross through any work that you do not want
to be marked.
Information
l The marks for questions are shown in brackets.
l The maximum mark for this paper is 80.
Advice
l Unless stated otherwise, you may quote formulae, without proof, from
the booklet.
l You do not necessarily need to use all the space provided.
For Examiner’s Use
Question Mark
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
TOTAL
Please write clearly in block capitals.
Centre number Candidate number
Surname _________________________________________________________________________
Forename(s) _________________________________________________________________________
Candidate signature _________________________________________________________________________
I declare this is my own work.
2
Do not write
outside the
box
(02) G/Jun24/7356/1
Section A
Answer all questions in the spaces provided.
1 It is given that tan θ° = k, where k is a constant.
Find tan (θ + 180)°
Circle your answer.
[1 mark]
–k – 1
k
1
k k
2 Curve C has equation y = 1
(x – 1)2
State the equations of the asymptotes to curve C
Tick () one box.
[1 mark]
x = 0 and y = 0
x = 0 and y = 1
x = 1 and y = 0
x = 1 and y = 1
3
Do not write
outside the
box
(03) G/Jun24/7356/1
Turn over U
3 Express √3 + 3√5
√5 – √3
in the form a + √b, where a and b are integers.
Fully justify your answer.
[4 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
Turn over for the next question
4
Do not write
outside the
box
(04) G/Jun24/7356/1
4 (a) (i) By using a suitable trigonometric identity, show that the equation
sin θ tan θ = 4 cos θ
can be written as
tan2 θ = 4
[1 mark]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4 (a) (ii) Hence solve the equation
sin θ tan θ = 4 cos θ
where 0° < θ < 360 xss=removed xss=removed> x + 6
Give your answer in exact form using set notation.
[4 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
Turn over for the next question
8
Do not write
outside the
box
(08) G/Jun24/7356/1
7 A triangular field of grass, ABC, has boundaries with lengths as follows:
AB = 234 m BC = 225 m AC = 310 m
The field is shown in the diagram below.
B C
A
234 m 310 m
225 m
7 (a) Find angle A
[2 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
9
Do not write
outside the
box
(09) G/Jun24/7356/1
Turn over U
7 (b) Farmers calculate the number of sheep they can keep in a field, by allowing one sheep
for every 1200 m2 of grass.
Find the maximum number of sheep which can be kept in the field ABC
[3 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
Turn over for the next question
10
Do not write
outside the
box
G/Jun24/7356/1 (10)
8 It is given that
ln x – ln y = 3
8 (a) Express x in terms of y in a form not involving logarithms.
[3 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
8 (b) Given also that
x + y = 10
find the exact value of y and the exact value of x
[3 marks]
Category | AQA PAPERS AND MARK SCHEME |
Comments | 0 |
Rating | |
Sales | 0 |