Section A
Answer all questions in the spaces provided.
1 Line L has equation
5y = 4x + 6
Find the gradient of a line parallel to line L
Circle your answer.
[1 mark]
– 5
4 – 4
5
4
5
5
4
2 One of the equations below is true for all values of x
Identify the correct equation.
Tick () one box.
[1 mark]
cos2 x = –1 – sin2 x
cos2 x = –1 + sin2 x
cos2 x = 1 – sin2 x
cos2 x = 1 + sin2 x
3
Do not write
outside the
box
(03) G/Jun24/7356/2
Turn over U
3 It is given that
3 loga x = loga 72 – 2 loga 3
Solve the equation to find the value of x
Fully justify your answer.
[4 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
Turn over for the next question
4
Do not write
outside the
box
(04) G/Jun24/7356/2
4 Curve C has equation y = 8sin x
4 (a) Curve C is transformed onto curve C1 by a translation of vector [ 0
] 4
Find the equation of C1
[1 mark]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4 (b) Curve C is transformed onto curve C2 by a stretch of scale factor 4 in the y direction.
Find the equation of C2
[1 mark]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4 (c) Curve C is transformed onto curve C3 by a stretch of scale factor 2 in the x direction.
Find the equation of C3
[1 mark]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
5
Do not write
outside the
box
(05) G/Jun24/7356/2
Turn over U
5 A student suggests that for any positive integer n the value of the expression
4n2 + 3
is always a prime number.
Prove that the student’s statement is false by finding a counter example.
Fully justify your answer.
[3 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
Turn over for the next question
6
Do not write
outside the
box
(06) G/Jun24/7356/2
6 In the expansion of (3 + ax)n, where a and n are integers, the coefficient of x2 is 4860
6 (a) Show that
3n a2 n (n – 1) = 87480
[3 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
6 (b) The constant term in the expansion is 729
The coefficient of x in the expansion is negative.
6 (b) (i) Verify that n = 6
[1 mark]
Category | AQA PAPERS AND MARK SCHEME |
Comments | 0 |
Rating | |
Sales | 0 |